Národní úložiště šedé literatury Nalezeno 20 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Subunit c of mammalian F1Fo ATP synthase - from molecular mechanisms of assembly to potential therapies
Marković, Aleksandra ; Mráček, Tomáš (vedoucí práce) ; Trnka, Jan (oponent) ; Rohlena, Jakub (oponent)
Savčí ATP syntáza F1Fo hraje klíčovou roli v produkci ATP prostřednictvím procesu oxidativní fosforylace. Sestavení tohoto složitého proteinového komplexu vyžaduje specifické asemblační faktory. Je pozoruhodné, že navzdory desetiletím výzkumu zůstává import podjednotky c, její začlenění do vnitřní mitochondriální membrány a sestavení monomerů do oktamerického c- kruhu záhadou. Abychom na tento proces lépe prozkoumali, provedli jsme nejprve screening interakčních partnerů podjednotky c pomocí přístupu založeném na hmotnostní spektrometrii. Náš screening identifikoval tři proteiny jako nejvýznamnější interaktory podjednotky c - TMEM70, TMEM242 a C15orf61, které jsme následně charakterizovali. Pro počáteční charakterizaci funkce TMEM242 jsme vytvořili knockdow i knockout modely HEK293 buněk. Deplece TMEM242 vedla k poruše biogeneze a snížení množství sestavené ATP syntázy bez ovlivnění obsahu ostatních OXPHOS komplexů. Naopak úplné vyřazení TMEM242 vedlo ke snížení množství komplexů I a IV, což naznačuje, že primárním cílem TMEM242 je ATP syntáza. Zatímco jiné studie naznačovaly, že TMEM242 i TMEM70 interagují s meziproduktem komplexu I v mitochondriích (MCIA), naše komplexomická analýza odhalila migrační posun TMEM70 směrem k MCIA pouze při poruše biogeneze OXPHOS. U TMEM70 jsme identifikovali jeho...
Studium mitochondriální morfologie v pankreatických β-buňkách v závislosti na přítomnosti různých druhů sekretagogů
Lorenc, David ; Dlasková, Andrea (vedoucí práce) ; Mráček, Tomáš (oponent)
Glukozová homeostáza organismu je klíčová pro jeho správné fungování. Na jejím udržovaní se zásadním způsobem podílejí pankreatické β-buňky, které slouží jako senzor změny koncentrace glukózy v krvi a zodpovídají za adekvátní výlev hormonu insulinu. Zvýšená koncentrace glukózy aktivuje oxidativní fosforylaci a následně dochází k navýšení koncentrace buněčného ATP, které poté nepřímo stimuluje sekreci insulinu. Proces oxidativní fosforylace je lokalizován ve vnitřní mitochondriální membráně, kde probíhá finální fáze zpracování energie substrátu na ATP. Aby byl proces oxidativní fosforylace co nejefektivnější, mitochondriální síť prochází řadou morfologických změn. V této práci jsme se zaměřili na objasnění vlivu změn koncentrace nutrientů na mitochondriální morfologii na modelu pankreatických β-buněk, tkáňové linii INS1E. Jako experimentální podmínky jsme použili: 1) vysokou koncentraci glukózy, při které dochází k maximální sekreci insulinu, 2) nízkou koncentraci glukózy, při které sekrece insulinu neprobíhá, a 3) přídavek α-ketoisokaproátu, metabolitu leucinu, který amplifikuje sekreci insulinu. První jsme charakterizovali bioenergetické parametry, které ovlivňují mitochondriální morfologii. Snížením koncentrace glukózy došlo ke snížení buněčné respirace, zároveň byl pozorován nárůst...
Molecular basis of deficit of F1Fo-ATP synthase and its impact on energy metabolism of a cell
Štufková, Hana ; Tesařová, Markéta (vedoucí práce) ; Kuncová, Jitka (oponent) ; Janovská, Petra (oponent)
Hlavní funkcí mitochondrií je produkce energie prostřednictvím procesu oxidační fosforylace. ATP syntáza je makromolekulární rotační stroj lokalizovaný ve vnitřní mitochondriální membráně katalyzující syntézu adenosintrifosfátu (ATP) z adenosindifosfátu (ADP) a anorganického fosfátu (Pi). Mitochondrialní poruchy ATP syntázy představují heterogenní skupinu onemocnění charakterizovanou různou závažností klinického fenotypu s nástupem od narození nebo v pozdějších fázích života. Mutace v mitochondriální nebo jaderné DNA mohou vést k poruše ATP syntázy, a to buď izolovaně, nebo v kombinaci s defekty dalších komplexů systému oxidační fosforylace. Cílem práce bylo charakterizovat protein TMEM70, asemblační faktor ATP syntázy, a studovat vliv nových variant vedoucích k deficitu ATP syntázy v pacientských vzorcích. TMEM70 je 21 kDa velký protein vnitřní mitochondriální membrány s orientací obou konců do mitochondriální matrix, který tvoří v membráně vyšší oligomerní struktury. Naše výsledky ukázaly, že absence proteinu TMEM70 vede ke vzniku izolovaného deficitu komplexu V, s přítomností adaptačního/kompenzačního efektu komplexů dýchacího řetězce. Ve svalových mitochondriích byly pozorovány různé stupně deficitu ATP syntázy způsobené extrémně vzácnými heteroplazmatickými variantami v genu MT-ATP6. Zatímco...
The Mitochondrial Contact Site and Cristae Organization System and F1FO-ATP Synthase Crosstalk is a Fundamental Property of Mitochondrial Cristae
CADENA, Lawrence Rudy
The acquisition of mitochondria from an endosymbiont closely related to extant alphaproteobacteria occurred prior to the divergence of modern eukaryotes. Since then, diverse eukaryotes have not only developed a number of different mechanisms to adapt to their environment regarding growth and proliferation, but perpetuated certain traits that have persisted for eons. This thesis postulates an ancestral mechanism for cristae development in mitochondria involving interplay between two cristae shaping protein complexes, the Mitochondrial Contact Site and Cristae Organization System and F1FO-ATP Synthase, that has remained conserved throughout eukaryotic diversification for over 2 billion years.
Post-transcriptional regulation of TbIF1 in life cycle of Trypanosoma brucei
GRATZL, Sascha
TbIF1, a protein Inhibitor of F1-ATPase in Trypanosoma brucei, is expressed exclusively in the insect stage of the parasite. In the bloodstream form, TbIF1 is switched off, because its activity interferes with the essential role of the ATP synthase in the maintenance of the mitochondrial membrane potential. Here, we employ a series of reporter genes to study the impact of 3'UTR of TbIF1 on mRNA stability and translatability to get insight into the tight post-transcriptional control of TbIF1. We provide evidence that developmentally regulated RNA binding protein Rbp10 is critical for downregulation of TbIF1 on translation level in bloodstream-form trypanosomes.
Determining the role of FoF1-ATP synthase dimers in Trypanosoma brucei mitochondrial biogenesis
HOLLAUS, David
ATP synthase dimers have previously been identified to be major determinants of mitochondrial cristae ultrastructure. In order to determine the role of these dimers in the organellar architecture of Trypanosoma brucei, we performed a functional screen that identified a single T. brucei ATP synthase subunit that, upon depletion, destabilizes primarily dimers of the enzyme without disrupting the singular functional unit.
Biogenesis, structure and physiological functions of mitochondrial ATP synthase
Eliáš, Jan ; Mráček, Tomáš (vedoucí práce) ; Doležal, Pavel (oponent)
Savčí mitochondriální ATP syntáza je enzym skládající se z 18 proteinových podjednotek, jenž se nachází ve vnitřní membráně mitochondrie. Její hlavní funkcí je využívat protonový gradient, který je utvářen komplexy respiračního řetězce (RCC), za účelem tvorby ATP. Vedle tvorby ATP je známo, že se dimery ATP syntázy podílejí na správné mitochondriální morfologii skrze tvorbu apexů krist. Dále bylo navrženo, že je rovněž zapojena ve fenoménu mitochondriální přechodné propustnosti, který má důležitou funkci v regulaci programované buněčné smrti. V posledních letech bylo na poli studia biogeneze savčí ATP syntázy dosaženo řady úspěchů. Proces jejího sestavování je nyní objasněn, nicméně poznatky o asemblačních faktorech periferního stonku a podjednotky c jsou stále neúplné. Právě za účelem zodpovězení těchto otázek na polích biogeneze a sekundarních rolí savčí ATP syntázy jsme vytvořili KO model katalytické β podjednotky F1 části savčí ATP syntázy (βKO). Tento model byl připraven na pozadí buněčné linie HEK293. Jeho následná charakterizace ukázala, že narušení F1 struktury enzymu vyústilo v nemožnost složení funkčního monomeru a došlo k rozpadu jednotlivých podjednotek. Jediným stabilním asemblačním intermediátem, jenž byl odhalen, byl oktamer podjednotky c, který oproti kontrole vykazoval zvýšenou stabilitu. V...
Superkomplexy respiračního řetězce v mitochondriích
Mikulová, Tereza ; Houštěk, Josef (vedoucí práce) ; Holzerová, Kristýna (oponent)
Mitochondrie jsou velmi důležitou organelou eukaryotní buňky. Probíhá v nich řada metabolických pochodů včetně oxidační fosforylace (OXPHOS). Je to proces, kterého se účastní enzymové komplexy umožňující oxidaci redukovaných molekul substrátu NADH a FADH2 spojenou s následným transportem protonů přes vnitřní mitochondriální membránu. Takto vzniklý elektrochemický potenciál je využíván ATP synthasou k syntéze ATP z fosfátu a ADP. Poslední výzkumy systému OXPHOS poukazují na existenci vyššího strukturního uspořádání komplexů do tzv. superkomplexů, které umožňují "substrate channeling". Hrají roli v sestavování a stabilitě komplexů a dokonce se zdá, že by mohli být i funkčním stavem dýchacího řetězce.
Mitochondrial ATP synthase deficiencies of a nuclear genetic origin
Karbanová, Vendula ; Houštěk, Josef (vedoucí práce) ; Kalous, Martin (oponent) ; Rossmeisl, Martin (oponent)
ATP syntáza je klíčový enzym buněčného metabolismu a defekty ATP syntázy patří k nejzávažnějším mitochondriálním onemocněním postihujícím dětskou populaci. Cílem této práce bylo identifikovat genetické defekty a popsat patogenní mechanismy narušení biosyntézy ATP syntázy, které vedou k izolované deficienci tohoto enzymu a projevují se jako mitochondriální encefalomyopatie s nástupem v novorozeneckém věku. Studie skupiny 25 pacientů vedla k identifikaci dvou jaderných genů zodpovědných za deficienci ATP syntázy. První postižený gen byl TMEM70 kódující neznámý mitochondriální protein. Tento protein byl popsán jako nový asemblační faktor ATP syntázy, první specifický pro vyšší eukaryota. Jeho velikost je 21 kDa, nachází se ve vnitřní mitochondriální membráně a není přítomný v tkáních pacientů. Mutace v TMEM70 genu byla nalezena u 23 pacientů a ukázala se být nejčastější příčinou deficience ATP syntázy. Studie na buněčných kulturách ukázaly, že defekt enzymu vede ke kompenzačně-adaptačnímu zvýšení komplexů IV a III respiračního řetězce způsobenému posttranskripční regulací jejich biosyntézy. Druhým postiženým genem byl ATP5E, který kóduje malou strukturní epsilon podjednotku ATP syntázy. Záměna konzervovaného Tyr12 za Cys způsobuje významný pokles obsahu ATP syntázy, ale zároveň akumulaci hydrofobní...

Národní úložiště šedé literatury : Nalezeno 20 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.